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Abstract—Malware and botnets pose a steady and growing
threat to network security. Therefore, packet analysis systems
examine network traffic to detect active botnets and spreading
worms. However, with the advent of multi-gigabit link speeds,
capturing and analysing header and payload of every packet
requires enormous amounts of computational resources and is
therefore not feasible in many situations.

We address this problem by presenting an efficient packet
sampling algorithm that picks a small number of packets from the
beginning of every TCP connection. Bloom filters are used to store
the required connection state information with constant amount
of memory. Our analysis of worm and botnet traffic shows that
the large majority of attack signatures is actually found in these
packets. Thus, our sampling algorithm can be deployed in front
of a detection system to reduce the amount of inspected packets
without degrading the detection results significantly.

I. INTRODUCTION

Signature-based network intrusion detection systems

(NIDS) have been in use for a long time. A well-known

example is Snort [1], which acts as a network sniffer and

analyses network traffic in order to detect attacks and other

types of undesired traffic. Therefore, packet headers as well as

packet payload are checked with pattern matching techniques

against a database of attack signatures.

Signature detection becomes more and more complex be-

cause the number of attacks to search for increases, and

because the signatures themselves become more sophisticated.

For example, regular expressions are quite common in today’s

Snort rules. On the other hand, the amount of packets to be

inspected increases with the permanent growth of network

traffic. Hence, the resources of a single system are often not

sufficient to analyse the entire traffic on a high speed link. As

a result, random packet losses are likely to occur if the traffic

exceeds the capacity of the detection system.

To keep track with large amounts of traffic, it is possible

to increase the processing capacity, for example by deploying

specialised signature matching hardware [2] or by distributing

packets to multiple systems [3]. The disadvantage of these

solutions is that they are very costly. As an alternative,

we concentrate the available computing power on analysing

the most relevant part of network traffic. For this purpose,

we present a new sampling algorithm which selects packets

carrying the first N payload bytes of every TCP connection.

We expect these packets to contain sufficient information for

detecting worm and botnet traffic. This approach is motivated

by previous work which showed that the first packets of a

connection or flow are the most relevant for detecting at-

tacks [4] as well as for security forensic [5]. On the other hand,

clipping long TCP connections by discarding the later packets

dramatically reduces the amount of traffic to be analysed.

We analysed a large number of worm and botnet packet

traces. The results confirm that the majority of today’s worm

and botnet traffic can be effectively found by inspecting the

early packets of each connection. Of course, this might change

in the future, so malicious content could be transmitted after a

long series of legitimate data in order to evade detection. We

will discuss this problem in Section V-C

The accurate identification of packets at the beginning

of a TCP connection is not trivial if only passive traffic

measurement data is available. It requires mechanisms for

TCP connection tracking and TCP stream reassembly which

are computationally complex and require a lot of memory

to save connection states and to buffer out-of-order packets.

Storing the connection states in a hash table may lead to

memory exhaustion and loss of connections if the number

of simultaneous TCP connections is very high, for example

during TCP scans. Furthermore, possible collisions in the hash

functions increases the complexity of inserting, querying, and

deleting hash table entries. Hardware-based solutions have

been presented to cope with these problems [6], yet the

implementation of such solutions is very expensive.

We developed and implemented a novel sampling algorithm

for deployment in high-speed networks with very high packet

rates and large numbers of simultaneous TCP connections. The

algorithm selects packets containing the first N payload bytes

of a TCP connection by using a simplified TCP connection

tracking mechanism and Bloom filters to store the connec-

tion states. Compared to existing solutions, the processing

complexity per packet is reduced and the required amount of

memory is constant at runtime. As a downside, sampling errors

may occur because of the simplifications in the connection

tracking mechanism as well as due to collisions in the hash

functions of the Bloom filters. However, our evaluation of the

sampling algorithm shows that high sampling accuracy can

be achieved if the size of the Bloom filters is dimensioned

appropriately.

In Section II, we introduce existing work related to packet

sampling for the purpose of payload analysis. Additionally,

this section gives an overview on the application of Bloom



filters in the area of networking. In Section III, we apply

signature detection to real traces of worm and botnet traffic

and examine how a restriction to the early packets of each

TCP connection impacts the detection results. This examina-

tion confirms the initial assumption that the large majority

of signatures is found in the first bytes of payload of a

TCP connection. Section IV presents our packet sampling

algorithm, including a description of the deployed simplified

TCP connection tracking mechanism and Bloom filter variants.

In Section V, we evaluate the probability of sampling errors

by applying the sampling algorithm to real traffic traces.

Finally, Section VI summarizes the advantages and limitations

of the proposed algorithm and gives an outlook on possible

extensions.

II. RELATED WORK

Kornexel et al. introduced the Time Machine [5] which

allows storing network traffic from high-speed networks for

a longer time period. In order to record large numbers of

flows with limited storage capacity, only a few kilobytes from

the beginning of each (unidirectional) flow are saved. This

significantly reduces the amount of disk space due to the

heavy-tailed flow length distribution. The authors state that

most of the relevant information necessary for security forensic

is preserved in the retained data, yet no evidence is provided

that this assumption is valid. Maier et al. propose to combine

the Time Machine with an intrusion detection system in order

to correlate ongoing traffic with past observations [7].

The importance of the first packets of a flow has been shown

in the context of attack detection and traffic classification.

Wang et al. present PAYL, a system that searches for anomalies

in the payload of network packets in order to detect attack

traffic [4]. An evaluation based on real traffic traces shows that

the detection rate does not decrease significantly if only the

first 1000 bytes of payload of each flow are analysed instead

of complete flows. On the other hand, processing time drops

dramatically due to the reduced amount of analysed traffic.

Regarding traffic classification, Sen et al. are able to classify

a flow as belonging to a P2P application after looking at the

first ten packets [8]. Won et al. show that most application

signatures appear within the first five packets of a flow [9].

The authors ascertain that analysing all packets of the flow

may even lead to misclassifications which do not occur if only

the first packets are examined.

The utilization of Bloom filters [10] and similar data

structures has been proposed for various traffic measurement

purposes. Chang et al. use Bloom filters to store recent packet

classification results [11]. Kong et al. use Time-out Bloom

filters (i.e., Bloom filters saving timestamps) to sample the

first packet of every observed flow [12]. The same authors

combine the Time-out Bloom filter with a Count-Min Sketch

(CMS), which is a Bloom filter storing counters, to detect port

scans [13]. The usage of CMS has also been proposed for

counting the number of distinct flows [14], [15], for counting

the number of packets or bytes per flow [16]–[18], and for

distributed traffic monitoring [19].

Whitehead et al. memorize every observed TCP SYN packet

in Bloom filters to detect established TCP connections [20].

Only packets belonging to an established TCP connection are

sampled, yet without limiting the number of sampled packets.

Close to our approach is the work of Canini et al. where a

chain of Bloom filters is used to sample the first J packets of

every bidirectional flow [21]. The sampling limit is expressed

as the maximum number of packets, which works fine for

classifying most kinds of legitimate traffic but makes it easy

for an attacker to circumvent packet selection, for example by

sending empty TCP ACK packets.

Our packet sampling algorithm aims at sampling the first N

payload bytes of each TCP connection and thus approximates

the behaviour of the Time Machine. In contrast to the Time

Machine and Canini’s approach, our algorithm tracks the

establishment and termination of every TCP connection, which

enables us to remove the saved information of terminated

connections. Hence, we do not need to reset the Bloom

filters periodically. Moreover, we demonstrate the usability of

our sampling strategy for signature-based worm and botnet

detection by examining real worm and botnet traffic.

III. WORM AND BOTNET DETECTION IN FIRST PACKETS

The basic reasoning behind focusing on the packets at the

beginning of a flow is that these packets usually contain

sufficient information to classify the entire flow as harmful

or benign. In this section, we evaluate to which extend this

assumption is true for worm and botnet traffic. Therefore,

we use Snort [1] to analyse traffic of different worms and

botnets. We determine the positions within the payload of the

TCP session at which the matching signatures are found. As a

result, we can evaluate how the detection results are affected

if the analysis is restricted to a few kilobytes of payload.

In contrast to the Time Machine [5], which restricts the

number of sampled bytes on the basis of unidirectional flows,

our sampling algorithm jointly counts the number of TCP pay-

load bytes exchanged in both direction of a TCP connection.

For TCP connections, this approach is appropriate for NIDS

performing session analysis in addition to the inspection of

individual packets. As the traffic volume in both direction

is usually not symmetric, separate limits for both directions

would result in an earlier cut-off of one direction. After the

cut-off is reached in one direction, an IDS cannot properly

continue session analysis as one direction of traffic is missing.

Our analysis is based on traffic of 93 different worms and

bots, which have been run in a controlled environment. Every

worm sample has been executed several times at different days

in order to see different behaviours based on the commands

received from the botmaster. The detection is done with two

rule sets: the standard rule set shipped with Snort 2.8.4.1 and

the ruleset downloaded from emergingthreats.net [22] on June

11th 2009. These rules detect a multitude of events ranging

from Command&Control (C&C) channels of different bots,

shell code, exploits, bot downloads, etc. Altogether, 4030

alarms are raised, among which 3511 alarms are triggered by

TCP packets, 451 by UDP packets, and 68 by ICMP packets.



TABLE I
OVERVIEW OF TCP ALARMS

Alarm Frequency

Shipped rule set:
- Shellcode 45
- Backdoor/Spyware 38
- HTTP oversize chunk encoding 12

Emergingthreats rule set:
- Instant Messaging 1116
- HTTP 810
- Mail 94
- Scanning 1041
- Miscellaneous 355
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Fig. 1. TCP alarms depending on number of payload bytes

For our evaluation, we are interested in the TCP alarms only

which constitute the majority of alarms.

Only 95 alarms are raised by the shipped rule set while

3416 alerts go back to the emergingthreats rule set. Table I

shows the alarm frequency for different causes. Alarms de-

scribed as ‘HTTP oversize chunk encoding’ are triggered if

the chunk length indicated in an HTTP header is larger than

the data provided. Most of the emergingthreats alarms are

related to scanning activity and C&C channels. C&C channels

are realised on top of Instant Messaging protocols, such as

IRC, HTTP, or SMTP. Further alarms found in HTTP traffic

originate from malware downloads. Finally, a large number

of TCP scans are detected, which is a common method for a

worm to find new victims. The observed scans are directed to

the ports of specific applications, such as VNC (5000-5020),

NetBIOS and SMB (135, 139, 445). ‘Miscellaneous’ contains

all remaining alarms which do not fit in any of the other

categories.

We calculate the position within the TCP connection at

which an alarm is raised using the TCP sequence and ac-

knowledgement numbers as well as TCP payload length of

the triggering packet. Hence, the calculated values are not byte

accurate but aligned with packet boundaries. This corresponds

to the result of our algorithm which samples traffic on a per-

packet basis.

Figure 1 displays the percentage of TCP alarms as a function

of the number of payload bytes N analysed. As can be seen,

most of the alarms are raised very early. About 30% of all

alarms are triggered by scans and therefore only need the

handshake packets for detection. Most of the alerts (96%) are

found within less than 3kB of payload from the beginning of

the connections. This means that a sampling limit of a few

kilobytes should be sufficient to detect the large majority of

today’s worm and botnet traffic. The last alarms are found

at about 682kB after the beginning of the connection. All of

them belong to a generic shellcode rule.

IV. CONNECTION BASED PACKET SAMPLING

This section describes the proposed sampling algorithm

which selects those packets carrying the first N bytes of

payload of every TCP connection, which requires an appropri-

ate TCP connection tracking mechanism. The next subsection

sketches the general challenges of TCP connection tracking

and discusses the complexity of accurate TCP stream reassem-

bly. In Section IV-B, we present a simplified connection track-

ing scheme which is more appropriate for connection-based

packet sampling in high-speed networks as it maintains much

less state information per connection. Section IV-C introduces

two Bloom filter variants used in our packet sampling algo-

rithm. The implementation details are given in Section IV-D,

where we will describe how to deploy these Bloom filters

and how to use them to store TCP connection states. Finally,

we summarize the main properties of the proposed sampling

algorithm in Section IV-E

A. Accurate TCP Connection Tracking

TCP connections are identified by the addresses and ports

of both communication endpoints and the protocol identifier.

Start and end of a regular TCP connection are defined by

SYN, FIN, and RST packets that are exchanged during the

TCP connection establishment and the termination phase. User

data is transferred during the communication phase. With help

of sequence numbers, the receiving peer is able to detect

reordering, loss, and duplication of packets in the network.

Packet losses are usually rectified by retransmissions.

TCP connection tracking aims at deducing the connection

state as well as the exchanged data by analysing TCP traf-

fic which has been passively monitored in the network. A

complete analysis of a TCP connection requires to detect

the connection establishment and termination, to recognize

duplicate packets, and to reorder the packets according to

the sequence numbers. Problems may occur if the monitoring

process does not observe all packets of the TCP connection.

This may happen due to routing changes or asymmetric

routing. Additionally, it occurs quite frequently that TCP con-

nections are not shut down properly because of connectivity

problems or because one of the communication endpoints

disappears without terminating the connection (e.g., due to

a system crash). In such situations, an external observer does

not know if and when the connection endpoints consider the

TCP connection as timed out.

Apart from these general problems, performing accurate

TCP connection tracking is quite complex and consumes a

certain amount of processing and memory resources for each

connection. The accurate reassembly of the exchanged data



requires to maintain more or less the same information that is

also kept by one of the connection endpoints. In particular,

sequence numbers need to be examined to reorder out-of-

order packets and to detect duplicates. Furthermore, a buffer

is needed to withhold a packet until all preceding packets have

arrived. Consequently, accurate connection tracking does not

scale well if the number of simultaneous TCP connections

is very large, as it is the case in high-speed networks. Also,

we have to cope with exceptional situations resulting in an

increased number of TCP connections. Examples are TCP port

and network scans as well as SYN flooding attacks, causing

large numbers of so-called half-open connections which have

to be saved by the tracking mechanism until a time-out can

be assumed.

If the exact reassembly of TCP connections is not necessary,

it is possible to simplify TCP connection tracking in order to

improve scalability. We present such a solution in the next

subsection.

B. Simplified TCP Connection Tracking

We improve the scalability of TCP connection tracking

by reducing the amount of state information that has to be

kept per connection as well as the processing complexity per

packet. The goal is to keep the decision whether to select or

discard a packet as simple as possible while maintaining the

sampling accuracy at an acceptable level. Hence, the proposed

solution trades sampling accuracy off against scalability and

high packet throughput.

The first simplification concerns the detection of connection

establishments. Instead of looking for complete TCP three-way

handshakes, we consider one SYN packet shortly followed

by a second packet without SYN flag as indicator of a

successfully established TCP connection. Both packets have to

be exchanged between the same endpoints identified by tuples

of IP address and port number. We ignore the direction of

these two packets, which allows us to detect the beginning

of a connection even if we observe only one direction of

the traffic, for example due to asymmetric routing. The two

packets have to be observed within a small time interval. We

determined three seconds to be an appropriate value for this

parameter from network traces. Hence, if only a SYN packet

is observed, the corresponding state will be automatically

deleted after this time-out. There is a small risk of handshake

detection errors because we do not check if the sequence and

acknowledgement numbers of the two packets are plausible.

The second simplification concerns the connection reassem-

bly: we do not perform any packet reordering nor do we

remove duplicated packets. We leave these tasks to the subse-

quent packet analysis step (e.g., an NIDS) for which knowl-

edge about wrong packet orders and duplicates may even be

of interest. Hence, omitting these task in the packet sampling

algorithm does not necessarily represent a disadvantage. More

important is the influence on the sampling results. In order to

sample those packets containing the first N bytes of payload,

we count the payload lengths in the order of packet arrival

without regarding sequence numbers. In the presence of packet

reordering and duplicates, we risk selecting packets which

should not be sampled (false positives) and risk dropping

packets which should be sampled (false negatives). However,

we expect that these problems are not very frequent at the

beginning of a TCP connection.

Finally, we consider a TCP connection to be terminated if

we observe a FIN or RST packet. Again, we do not check

if the packet’s sequence number is valid, which may cause

a problem. We drop all packets observed after the FIN or

RST packet. This may result in false negatives if the sampling

limit is not reached and if more data is sent from the other peer

before shutting down the connection. In order to clean up stale

TCP connections which have not been terminated properly, an

supplementary time-out mechanism needs to be implemented

which removes the state of connections with long idle times.

As we have seen, the proposed simplifications may lead

to wrong sampling decisions under certain conditions. In

Section V-B, we evaluate the frequency of false positives

and false negatives by comparing the results of accurate and

simplified connection tracking applied to real traffic traces.

The simplified connection tracking mechanism still needs

to maintain certain state information for every connection. We

need to store the arrival of the first SYN packet as well as the

counter containing the number of payload bytes to be sampled.

The counter must be kept as long as packets are sampled

from the corresponding connection, which means until one

of the following happens: a FIN or RST packet is observed,

the sampled packets reach the configured number of payload

bytes, or the connection is timed out.

Although the amount of state data is much smaller than in

the case of accurate TCP connection tracking, the required

memory still linearly depends on the number of simultaneous

TCP connections. As mentioned earlier, the number of TCP

connections may grow to very large numbers in high-speed

networks or in certain attack situations. To solve this problem,

we make use of Bloom filters in which we store the connection

states. As a result, the algorithm operates with a fixed amount

of memory which is independent of the number of parallel

connections. The next section introduces the utilized types of

Bloom filters before Section IV-D describes their deployment.

C. Bloom filters

A Bloom filter [10] is a probabilistic data structure that is

capable to store information about a set of elements without

storing the elements itself. In particular, the stored information

specifies whether an element is part of the set or not. The filter

is composed of a bit array and a set of hash functions which

index the individual bits. Initially, every bit in the array is set

to zero, indicating that the set is empty. If a new element is to

be inserted into the set, all hash functions must be calculated

for this element in order to get all associated indexes. All

corresponding bits are then set to one and the new element is

considered as part of the set. If at least one of the bits is zero,

the element is not part of the set.

False positives are possible due to collisions in the hash

functions, meaning that an element can be identified as part of



the set even though it has not been added to it. This happens if,

and only if, all bits associated to the queried element have been

set by other elements. False negatives (i.e., elements which

have been added to the set but cannot be identified by the

Bloom filter) are not possible.

Memory consumption can be calculated depending on the

number of used hash functions (l), the collision probability

of the hash functions (p) and the number of stored elements

(k) [11]:

m = −
l · k

ln
(

1 − p
1

l

) (1)

A drawback of conventional Bloom filters is that elements

cannot be deleted from the set. It is only possible to reset the

entire filter, which results in a complete loss of the stored in-

formation. For connection tracking, however, we must be able

to remove the connection state after the connection terminated.

Therefore, we use two Bloom filters variants summarized in

the following.

The first variant is called Time-out Bloom filter [12]. Its

array is composed of timestamps instead of bits. In order to

insert an element into the filter, the associated timestamps are

overwritten with the current time. Each element is only valid

for a certain amount of time and will automatically expire

after this time span. To check if an element is still valid, the

difference between the current time and the oldest associated

timestamp in the filter is compared to the given timeout.

The second Bloom filter variant is called Count-Min Sketch

(CMS) [23] and associates a positive value to each inserted

element. Its array consists of counters which can be increased

and decreased. With the insertion of an element, a positive

value is added to the associated counters. When querying an

element, the smallest associated counter contains the current

value of the element. If the smallest counter is zero, the

element is not considered as part of the set.

We use these two filter variants to store the connection states

needed to perform simplified TCP connection tracking and to

sample the first N bytes of payload per TCP connection.

D. The Algorithm

We implemented a packet sampling algorithm which selects

the first packets of a TCP connection until a maximum of

N bytes of payload has been exported. The algorithm uses

the simplified TCP connection tracking mechanism presented

in Section IV-B and uses two Time-out Bloom filters and

one CMS to store the required connection states. We use 2-

universal hash functions [24] for the Bloom filters.

Each TCP connection is identified by the quadruple of

source IP address (SA), destination IP address (DA), source

port (SP ), and destination port (DP ). The element stored in

the filters results from the following concatenation:

min {(SA||SP ), (DA||DP )} ||max {(SA||SP ), (DA||DP )}

As we sort the tuple of IP address and corresponding port

numerically, both directions of the TCP connection map to

the same element.

The first Time-out Bloom filter stores the timestamps of

all observed SYN packets. The CMS stores the number of

payload bytes which need to be exported for an established

TCP connection. The second Time-out Bloom filter stores the

point in time at which the packet sampling for a given TCP

connection was stopped, either because the maximum number

of payload bytes was reached or because a FIN or RST packet

was observed. The three filters are called start filter, export

filter, and stop filter in the remainder of this paper.

The packet treatment of the sampling algorithm can be

summarized as follows:

On the arrival of a SYN packet, the timestamp of the packet

is written into the start filter and the packet is sampled.

For any packet which is not a SYN, FIN, or RST packet,

we first check, if a corresponding connection exists in the

export filter (non-zero value). If this is the case, the packet is

sampled and the counters in the export filter are decreased by

the minimum of the payload length and the element’s value

currently stored in the filter. This is to ensure that the stored

value does not become negative.

If the connection does not exist in the export filter, we

look up the timestamps stored in the start and stop filters.

If the timestamp of the start filter is more recent than the

timestamp in the stop filter, and if the timestamp in the start

filter is not older than three seconds, the packet belongs to a

new connection for which packet sampling should be started.

Hence, the packet is sampled and the maximum number of

payload bytes N to be sampled minus the payload length of

the packet is inserted into the export filter. In any other case,

the packet is not sampled.

On the arrival of a FIN or RST packet, we check if the

connection exists in the export filter. If this is the case, the

packet is sampled and the connection is deleted from the

export filter by subtracting the current element’s value from the

associated counters. In addition, the timestamp of the packet

is saved in the stop filter. If the connection is not included in

the export filter, the FIN or RST packet is not sampled.

As already mentioned, collisions may lead to corrupt infor-

mation stored in the filters. Consequences are sampling errors

in the form of packets which are sampled although they should

not (false positives) and packets which are dropped although

they should be sampled (false negatives). In Section V-B,

we assess the number of sampling errors by applying the

algorithm to real traffic traces. Furthermore, we evaluate how

many errors are caused by the simplified TCP connection

tracking mechanism and how this number increases due to

collisions in the hash functions of the Bloom filters.

E. Main Properties of the Sampling Algorithm

Our sampling algorithm approximately samples the first

N bytes of payload per TCP connection. Therefore, it im-

plements a simplified TCP connection tracking mechanism

which requires less memory per connection state than accurate

connection tracking. Since the connection states are stored in

Bloom filter structures, the memory consumption stays con-

stant during runtime. The computational complexity per packet



TABLE II
PROPERTIES OF NETWORK TRACES

Property Twente Munich

Duration (minutes) 15 87
Packets 16,714,065 10,810,511
TCP packets 11,534,706 10,491,400
TCP connections 35,413 18,524
Size 10.2 GB 10.9 GB
TCP data 8.9 GB 10.7 GB

is constant and does not depend on the number of simultaneous

TCP connections or the filling level of the filters. Stale connec-

tions may lead to false positives in other connections, yet do

not occupy any additional memory. Similarly, TCP scans and

SYN flooding attacks fill the start filter and may result in false

positives in other connections. However, the required memory

remains constant again. In general, the collision probability

increases with increasing number of simultaneous connections

stored in the filters, which may degrade the sampling accuracy

depending on the order of packet arrival.

The Time Machine [5] stores a few kilobytes per unidirec-

tional flow, counting packet headers and payload. In contrast,

we restrict the total number of payload bytes sampled in both

direction. Hence, if the sampling limit is reached, sampling

stops for the entire TCP connection, which is useful if both

directions are jointly analysed, such as in an NIDS. Further-

more, counting payload lengths instead of packet lengths is

advantageous since empty packets will be selected without

decreasing the number of bytes still to be sampled. As the

Time Machine uses hash tables to store the state of each flow,

it requires variable amount of memory and does not scale well

if the number of simultaneous flows becomes very high.

The main difference to Canini’s approach [21] is that we

count payload bytes instead of packets. Since byte counters

are several magnitudes larger than packet counters, Canini’s

approach cannot be adopted to achieve our sampling goal.

V. EVALUATION

In this section, we evaluate the accuracy of the proposed

sampling algorithm by applying it to real traffic traces. Sec-

tion V-A gives some details about the traces. In Section V-B,

we determine which kind of errors and how many of them

actually occur depending on different parameter settings. Fi-

nally, we discuss possible ways to evade packet sampling in

Section V-C.

A. Traces Used in Evaluation

We evaluate our algorithms using two traffic traces. The

first one was captured at the access link of a student residence

at the University of Twente [25]. The second trace file has

been recorded in the network of our research group at the

Technische Universität München. The two traces will be

called Twente trace and Munich trace in the following. Some

properties of the traces are listed in Table II.

We implemented a reference algorithm which provides

accurate TCP connection tracking, packet reordering and re-

moval of duplicate packets to identify those packets which
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Fig. 2. Amount of sampled traffic

should be sampled depending on the sampling limit N . Fig-

ure 2 shows the amount of traffic (including packet headers)

sampled by the reference algorithm. As expected, the overall

amount of sampled traffic increases for larger values of N .

However, the amount of sampled traffic is very small compared

to the amount of TCP traffic in the original traces, which

confirms the observations of previous work [5]. In the case

of the Twente trace, between 476,817 ( N = 1kB) and

512,334 (N = 25kB) packets are sampled. The amount of

sampled TCP data is between 44 MB and 189MB, representing

0.5% to 2.1% of the TCP traffic volume. In the case of

the Munich trace, the data reduction is even larger: Between

314,063 and 326,742 TCP packets are sampled, corresponding

to only 25MB (about 0.2%) to 81MB (about 0.8%) of the TCP

traffic. This was expected because the Munich trace contains

about half as many TCP connections as the Twente trace at a

comparable number of TCP packets. Thus, TCP connections

in the Munich trace are longer and contain more packets on

average, which increases the effect of the packet sampling.

B. Empirical Analysis of Sampling Errors

In Section IV-B, we discussed under which conditions the

simplified connection tracking mechanism may cause sam-

pling errors. Additional errors may be caused by the utilization

of Bloom filters due to collisions in the hash functions. The

goal of our evaluation is to assess how many sampling errors

are caused by simplified connection tracking and how many

errors go back to the Bloom filters. Therefore, we implemented

a second variant of the algorithm described in Section IV-D

which stores the same connection state information in hash

tables with concatenated lists instead of Bloom filters. In

various experiments, we determined the numbers of false

positives and false negatives for both implementations, taking

the output of the reference algorithm as ground truth.

Since the number of hash functions influences the com-

puting cost, a small number of hash functions is desired. On

the other hand, a large number of hash functions reduces the

probability of collisions. We found that l = 3 hash functions

is a good trade-off between computational complexity and

collision probability.

We dimension the Bloom filters for the expected number

of connections to be stored simultaneously. In practice, this
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value needs to be estimated or determined empirically. For our

evaluation, we can obtain it with help of the hash table based

variant of our sampling algorithm. The maximum number of

simultaneous connections that need to be stored in the hash

table is 4573 for Twente trace and 1150 for Munich trace. On

average, however, only about 1168 and 248 connections are

stored, respectively.

Using equation (1), we calculate the necessary minimum

filter sizes for which the expected collision probability does

not exceed 10% (p = 0.1). Based on the results, we use filter

sizes of 5800 entries for Twente trace and 1200 entries for

Munich trace in the following.

We determine the overall number of sampling errors (false

positives and false negatives) for both variants of the al-

gorithm. Figure 3 shows the results in dependence of the

sampling limit N . As can be seen, more sampling errors occur

in the Twente trace than in the Munich trace, which can be

explained by the larger number of TCP connections in the

Twente trace. For both variants of the algorithm, the number

of errors increases for larger N .

In the case of the hash table based algorithm, the errors

may only result from simplified TCP connection tracking.

With increasing N , more packets need to be selected by the

sampling algorithm, thus more duplicate packets and wrongly

ordered packets can turn into sampling errors. The error rate

is small compared to the overall number of packets in the

traces. If 1kB of payload is sampled per connections in the

Twente trace, only 30,130 and 30,694 errors are produced

by the hash table based variant and the Bloom filter variant

of the sampling algorithm, respectively. This corresponds to

7.35% and 7.36% with respect to the number of sampled

packets. With a sampling limit of N = 25kB, the numbers

increase to 59,789 (11.6%) and 73,925 (14.4%). Regarding

the Munich trace, the hash table based variant causes between

23,106 (6.3%) and 36,601 (11.2%) errors for N = 1kB and

N = 25kB, respectively. With Bloom filters, the figures are

23,131 (6.4%) and 38,156 (11.6%). Apparently, the impact

of collisions in the hash functions on the sampling results is

smaller than for the Twente trace, which can be explained by

a different traffic characteristics.

In summary, it can be said that most sampling errors go back

to simplified TCP connection tracking. Such errors also occur

with other sampling approaches not performing accurate TCP

connection tracking, such as the Time Machine. The utilization

of Bloom filters increases the sampling errors by 0.1% to 24%,

depending on the traffic.

For the Twente trace, Figure 4 differentiates the sampling

errors of the Bloom filter based variant into false negatives

and false positives. Most of the errors are false negatives. The

likely reason is that packets are retransmitted within the first

N bytes of the connection.

Now, we evaluate how the number of errors evolves if

smaller or larger Bloom filter sizes are chosen. Figure 5 shows

the sampling errors for filter sizes in the range of 2000 to 9000

entries. The sampling limit is set to N = 5kB. As expected,

smaller filter sizes result in more sampling errors, reaching

76,815 sampling errors for m = 2000. For larger filter sizes

(N > 9000), the number of errors falls below 47,450 and

approaches the number of errors of the hash based variant

of the algorithm (46,548). This means that the impact of the

Bloom filters becomes very small.

C. Evading Packet Selection

An attacker being aware of the sampling strategy could try

to evade packet selection and detection in two different ways.

Firstly, he could locate the malicious part of payload beyond

the first N bytes of a TCP connection. This is a general

problem which also affects similar approaches such as the

Time Machine.

Secondly, he could trick the simplified TCP connection

tracking mechanism by inserting packets with identical ad-

dresses and ports but invalid sequence numbers as described in

Section IV-B. Although discarded by the receiver, such packets

will be sampled if they are observed within the sampling

limit, possibly causing the dropping of later packets with valid

sequence numbers that should be sampled. Again, the Time

Machine cannot cope with this kind of evasion, either.

To make evasion more difficult, we can dynamically vary

N over time (e.g., depending on the current load on the

detection system) to make the sampling limit less predictable.

Furthermore, we can choose different values for N depending

on some predefined filters, for example in order to sample

fewer packets exchanged between trustworthy endpoints.

The attacker may also attack the sampling algorithm itself,



for example by performing a TCP scan in order to poison the

values stored in the start filter. This may lead to connections

being erroneously added to the export filter causing false pos-

itives and an increased sampling rate which risks to overload

the analysis system. However, as all SYN packets are sampled,

such an attack will be detected. Moreover, the disturbing effect

on the sampling result is temporary, which means that the false

positive rate will decline to normal level after the scan is over.

VI. CONCLUSION

We have presented a sampling algorithm which selects

packets containing the first N payload bytes of each TCP

connection. According to our analysis of real worm and botnet

traffic with Snort, the large majority of the signatures are

found within the first few kilobytes of payload. Hence, our

algorithm can be deployed to reduce the load of the NIDS

without degrading the detection results significantly.

The sampling algorithm makes use of a simplified TCP

connection tracking mechanism and Bloom filters to store

the required connection states. Hence, memory consumption

remains constant during runtime, which means that packet

losses due to memory exhaustion may not occur. Moreover,

the computational complexity per packet is constant and

independent of the observed traffic. Thus, the algorithm can

be efficiently implemented in software or hardware to sample

traffic at high speed links and pass the selected packets to a

subsequent detection system.

An empirical evaluation of the sampling algorithm shows

that the number of sampling errors is small and rarely affected

by collisions in the Bloom filters if their sizes are appropriately

dimensioned for the average number of simultaneous TCP

connections. Under extreme conditions with an unexpectedly

high number of connections, the number of sampling errors

increases slowly without affecting the function of the sampling

algorithm.

Although we have only considered TCP connections in this

paper, it would be possible to develop a similar sampling algo-

rithm for UDP traffic. In this case, however, we cannot profit

from flags indicating the beginning and end of a connection.
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